Markers of Pluripotency in Human Amniotic Epithelial Cells and Their Differentiation to Progenitor of Cortical Neurons
نویسندگان
چکیده
Human pluripotent stem cells (hPSC) have promise for regenerative medicine due to their auto-renovation and differentiation capacities. Nevertheless, there are several ethical and methodological issues about these cells that have not been resolved. Human amniotic epithelial cells (hAEC) have been proposed as source of pluripotent stem cells. Several groups have studied hAEC but have reported inconsistencies about their pluripotency properties. The aim of the present study was the in vitro characterization of hAEC collected from a Mexican population in order to identify transcription factors involved in the pluripotency circuitry and to determine their epigenetic state. Finally, we evaluated if these cells differentiate to cortical progenitors. We analyzed qualitatively and quantitatively the expression of the transcription factors of pluripotency (OCT4, SOX2, NANOG, KLF4 and REX1) by RT-PCR and RT-qPCR in hAEC. Also, we determined the presence of OCT4, SOX2, NANOG, SSEA3, SSEA4, TRA-1-60, E-cadherin, KLF4, TFE3 as well as the proliferation and epigenetic state by immunocytochemistry of the cells. Finally, hAEC were differentiated towards cortical progenitors using a protocol of two stages. Here we show that hAEC, obtained from a Mexican population and cultured in vitro (P0-P3), maintained the expression of several markers strongly involved in pluripotency maintenance (OCT4, SOX2, NANOG, TFE3, KLF4, SSEA3, SSEA4, TRA-1-60 and E-cadherin). Finally, when hAEC were treated with growth factors and small molecules, they expressed markers characteristic of cortical progenitors (TBR2, OTX2, NeuN and β-III-tubulin). Our results demonstrated that hAEC express naïve pluripotent markers (KLF4, REX1 and TFE3) as well as the cortical neuron phenotype after differentiation. This highlights the need for further investigation of hAEC as a possible source of hPSC.
منابع مشابه
بررسی اثرات کرایوپرزرویشن بر سلول های اپی تلیال قبل و بعد از جداسازی از پرده آمنیون انسانی
Background and purpose: One of the recent techniques for increasing the output of cryopreservation is using different scaffolds in long-term preservation of stem cells for cell therapy. Undesirable differentiation and decrease in the number of viable cells are two major problems in this process. In order to overcome these problems, in this study the human amniotic epithelial cells were cryopres...
متن کاملکرایوپرزرویشن سلول های اپی تلیال آمنیون انسانی در محیط فاقد سرم
Introduction & Objective: One of the important issues in long term storage of cells is removal of animal serum from cell culture environments. The aim of this study was to evaluate amniotic fluid (AF), which is full of growth factors, as substitute for fetal bovine serum (FBS) in the cryopreservation protocol. Materials & Methods: In this experimental study human amniotic epithelial cells wer...
متن کاملP-99: Evaluation of Pluripotency Markers of Mouse Endometrial Tissue in Different Stages of Estrous Cycle
Background: It is assumed that adult stem/progenitor cells are responsible for cycling remodeling of the uterus endometrium throughout the reproductive life of the female. This study aimed to identify and localize stem/progenitor cells in the mice uterus using immunohistochemistry. Materials and Methods: 6-8 weeks old virgin female NMRI mice were submitted to the vaginal smear examination to de...
متن کاملExtract of mouse embryonic stem cells induces the expression of pluripotency genes in human adipose tissue-derived stem cells
Objective(s): In some previous studies, the extract of embryonic carcinoma cells (ECCs) and embryonic stem cells (ESCs) have been used to reprogram somatic cells to more dedifferentiated state. The aim of this study was to investigate the effect of mouse ESCs extract on the expression of some pluripotency markers in human adipose tissue-derived stem cells (ADSCs). Materials and Methods: Human A...
متن کاملA review of Biology and clinical use of Mesenchymal stem cell: an immune -modulator progenitor cell
Human mesenchymal stem cells (hMSCs), which also called mesenchymal stromal cells, are multipotent stem cell. Human MSCs typically are positive for the surface markers CD44, CD73, CD90, CD105, CD106, and also negative for hematopoietic markers CD34 and CD45.These cells can be isolated from postnatal bone marrow, adipose tissue, placenta, and scalp tissue, as well as from various fetal tissues. ...
متن کامل